Infodemiology of systemic lupus erythematous using Google Trends

Author:

Radin M1,Sciascia S1

Affiliation:

1. Center of Research of Immunopathology and Rare Diseases – Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, Department of Clinical and Biological Sciences, and SCDU Nephrology and Dialysis, S. Giovanni Bosco Hospital, Italy

Abstract

Objective People affected by chronic rheumatic conditions, such as systemic lupus erythematosus (SLE), frequently rely on the Internet and search engines to look for terms related to their disease and its possible causes, symptoms and treatments. ‘Infodemiology’ and ‘infoveillance’ are two recent terms created to describe a new developing approach for public health, based on Big Data monitoring and data mining. In this study, we aim to investigate trends of Internet research linked to SLE and symptoms associated with the disease, applying a Big Data monitoring approach. Methods We analysed the large amount of data generated by Google Trends, considering ‘lupus’, ‘relapse’ and ‘fatigue’ in a 10-year web-based research. Google Trends automatically normalized data for the overall number of searches, and presented them as relative search volumes, in order to compare variations of different search terms across regions and periods. The Menn–Kendall test was used to evaluate the overall seasonal trend of each search term and possible correlation between search terms. Results We observed a seasonality for Google search volumes for lupus-related terms. In the Northern hemisphere, relative search volumes for ‘lupus’ were correlated with ‘relapse’ (τ = 0.85; p = 0.019) and with fatigue (τ = 0.82; p = 0.003), whereas in the Southern hemisphere we observed a significant correlation between ‘fatigue’ and ‘relapse’ (τ = 0.85; p = 0.018). Similarly, a significant correlation between ‘fatigue’ and ‘relapse’ (τ = 0.70; p < 0.001) was seen also in the Northern hemisphere. Conclusion Despite the intrinsic limitations of this approach, Internet-acquired data might represent a real-time surveillance tool and an alert for healthcare systems in order to plan the most appropriate resources in specific moments with higher disease burden.

Publisher

SAGE Publications

Subject

Rheumatology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3