Affiliation:
1. Department of Orthopedics, 3-69 Medical Science Building, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
Abstract
Estrogen deficiency results in increased bone turnover and net bone loss in rats as well as humans. The respective roles of bone turnover and mechanical strain in mediating estrogen deficiencyinduced cancellous bone loss were investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in long bones. However, cancellous bone was preferentially lost in the metaphysis, a site that experiences low strain energy during normal physical activity. No bone loss was observed in the epiphysis, a site experiencing higher strain energy, despite a similar increase in bone turnover. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased or decreased in long bones of ovariectomized rats by treadmill exercise or functional unloading, respectively. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing weight bearing accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in unloaded limbs and prevented bone loss in the loaded limbs. These results suggest that estrogen alters the mechanosensory (mechanostat) set point for skeletal adaptation, effectively reducing the minimum strain energy levels at which bone is added. Additionally, these studies suggest that physical activity as well as endocrine status play an important role in maintenance of the female skeleton during aging.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献