Mathematical analysis of antigen selection in somatically mutated immunoglobulin genes associated with autoimmunity

Author:

MacDonald CM1,Boursier L.2,D'Cruz DP3,Dunn-Walters DK2,Spencer J.4

Affiliation:

1. Department of Mathematics, Kings College London, The Strand, London, UK

2. Peter Gorer Department of Immunobiology, Kings College London School of Medicine, Guy's, King's and St Thomas' Hospitals, London, UK

3. Louise Coote Lupus Unit, St Thomas' Hospital, Westminster Bridge Road, London, UK

4. Peter Gorer Department of Immunobiology, Kings College London School of Medicine, Guy's, King's and St Thomas' Hospitals, London, UK,

Abstract

Affinity maturation is a process by which low-affinity antibodies are transformed into highly specific antibodies in germinal centres. This process occurs by hypermutation of immunoglobulin heavy chain variable (IgH V) region genes followed by selection for high-affinity variants. It has been proposed that statistical tests can identify affinity maturation and antigen selection by analysing the frequency of replacement and silent mutations in the complementarity determining regions (CDRs) that contact antigen and the framework regions (FRs) that encode structural integrity. In this study three different methods that have been proposed for detecting selection: the binomial test, the multinomial test and the focused binomial test, have been assessed for their reliability and ability to detect selection in human IgH V genes. We observe first that no statistical test is able to identify selection in the CDR antigen-binding sites, second that tests can reliably detect selection in the FR and third that antibodies from nasal biopsies from patients with Wegener’s granulomatosis and pathogenic antibodies from systemic lupus erythematosus do not appear to be as stringently selected for structural integrity as other groups of functional sequences.

Publisher

SAGE Publications

Subject

Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3