Regulatory mechanisms of transmembrane phospholipid distributions and pathophysiological implications of transbilayer lipid scrambling

Author:

Bevers EM1,Comfurius P1,Dekkers DWC1,Harmsma M1,Zwaal RFA1

Affiliation:

1. Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands

Abstract

The various phospholipid classes that comprise mammalian cell membranes are distributed over both leaflets of the bilayer in a non-random fashion. While a specific and ATP-dependent transporter is responsible for rapid inward movement of aminophospholipids, its inhibition does not lead to spontaneous redistribution of lipids. Conditions of cellular activation which are accompanied with increased levels of intracellular Ca2+ may cause a collapse of lipid asymmetry by switching on an ATP-independently operating scramblase, which accelerates bidirectional movement of all phospholipid classes. The most prominent change in transmembrane lipid distribution is surface exposure of phosphatidylserine (PS), the more so since conditions which activate scramblase in most if not all cases lead to inhibition of aminophospholipid translocase activity, which will prevent PS from being pumped back to the inner leaflet of the membrane. Surface-exposed PS serves at least two important physiological functions: it promotes blood coagulation and offers a recognition signal for clearance by macrophages and other cells of the reticuloendothelial system. As such, PS exposure may form an important early event in the process of apoptosis to ensure rapid removal of these cells in order to avoid release of their inflammatory contents. Defective regulation of transbilayer lipid distribution may result in clinical manifestations such as in the Scott syndrome, a bleeding disorder caused by an impaired scramblase activity. Conversely, excessive PS exposure may lead to thrombosis or may explain formation of so-called antiphospholipid antibodies as occurring in patients with antiphospholipid syndrome.

Publisher

SAGE Publications

Subject

Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3