Increased DNA double-strand breaks and enhanced apoptosis in patients with lupus nephritis

Author:

Souliotis V L1,Sfikakis P P2

Affiliation:

1. Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece

2. Rheumatology Unit, First Department of Propedeutic Internal Medicine, Athens University Medical School, Athens, Greece

Abstract

Objective DNA double-strand breaks (DSBs) lead to mutations, genomic instability and apoptotic death, whereas accumulation of apoptotic cells results in excessive autoantigen presentation and autoantibody formation. We aimed to measure DSB levels in lupus nephritis, a severe complication of the prototypic systemic autoimmune disease. Methods The intrinsic DNA damage and the apoptosis induction/DSB levels were evaluated in peripheral blood mononuclear cells of six patients and 10 healthy controls following exposure to genotoxic agents (melphalan, cisplatin) ex vivo. DSBs were assessed using immunofluorescence quantification of γH2AX foci and comet assay. Results Intrinsic DNA damage was increased in lupus versus control cells in both assays (Olive Tail Moment units of 15.8 ± 2.3 versus 3.0 ± 1.4 in comet, p < 0.01; % γH2AX-positive cells: 13.6 ± 1.8 versus 4.6 ± 0.9, p < 0.01, respectively). Melphalan or cisplatin doses as low as 9.9 ± 4.8 or 29.8 ± 8.3 µg/ml, respectively, were sufficient to induce apoptosis in lupus cells; control cells required doses of 32.3 ± 7.7 and 67.7 ± 5.5 µg/ml, respectively. Drug-induced DSB levels were increased in lupus versus control cells, with the area under the curve (AUC) for melphalan-induced DSBs being 3050 ± 610 (% γH2AX-positive staining cells) × (drug dose) in patients and 1580 ± 350 in controls ( p < 0.05); the corresponding values for cisplatin-induced AUC were 13900 ± 1800 for lupus and 4500 ± 750 for controls ( p < 0.01). Interestingly, within either lupus patients or controls examined, the accumulation of DSBs correlated with apoptosis degrees (all p < 0.01). Results in lupus cells were not associated with individual disease activity level or treatment modalities at the time of the study. Conclusion These findings suggest a novel mechanism by which increased accumulation of DSBs may render cells more sensitive to apoptosis, thus contributing to the induction of systemic autoimmunity.

Publisher

SAGE Publications

Subject

Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3