Syk inhibitor attenuates inflammation in lupus mice from FcgRIIb deficiency but not in pristane induction: the influence of lupus pathogenesis on the therapeutic effect

Author:

Issara-Amphorn Jiraphorn12ORCID,Somboonna Naraporn34,Pisitkun Prapaporn5ORCID,Hirankarn Nattiya26ORCID,Leelahavanichkul Asada27ORCID

Affiliation:

1. Medical Microbiology, Interdisciplinary and International Programme, Graduate School, Chulalongkorn University, Bangkok, Thailand

2. Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

3. Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

4. Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand

5. Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

6. Centre of Excellence in Immunology and Immune Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

7. Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand

Abstract

Macrophages are responsible for the recognition of pathogen molecules. The downstream signalling of the innate immune responses against pathogen molecules, lipopolysaccharide (LPS) and (1→3)-β-D-glucan (BG), and the adaptive immune response to antibodies, Fc gamma receptor (FcgR), is spleen tyrosine kinase (Syk). Because pathogen molecules and antibodies could be presented in lupus, impact of Syk and macrophages in lupus is explored. FcgR-IIb deficient (FcgRIIb-/-) mice, a model of inhibitory signalling loss, at 40 weeks old, but not pristane mice (a chemical induction lupus model) demonstrated spontaneous elevation of LPS and BG in serum from gut translocation despite the similarity in faecal microbiome analysis. Syk abundance in FcgRIIb–/– mice was higher than in pristane mice, possibly due to several Syk activators (anti-dsDNA, LPS and BG), and Syk inhibitor–attenuated proteinuria and serum cytokines only in FcgRIIb–/– mice. In addition, LPS + BG enhanced the expression of activating FcgRs, NF-κB and Syk, together with supernatant TNF-α predominantly in FcgRIIb–/– compared to wild-type macrophages. The inhibitors against Dectin-1, Syk and nuclear factor kappa B, but not anti-Raf-1, reduced supernatant TNF-α in LPS+BG-activated macrophages, implying Syk-dependent signalling. The pathogen molecules enhanced activating-FcgRs, without inhibition, through Syk, a shared downstream innate and adaptive signalling, is responsible for the hyper-responsiveness in FcgRIIb–/– macrophages. In conclusion, Syk inhibitor attenuated inflammation in FcgRIIb–/– but not in pristane mice, implying the influence of a lupus genetic background in treatment modalities.

Publisher

SAGE Publications

Subject

Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3