Stable expression ratios of five pyroptosis-inducing cytokines in the spleen and thymus of mice showed potential immune regulation at the organ level

Author:

Fan H1,Zhang S1,Li N1,Fan P1,Hu X1,Liang K1,Cheng X1ORCID,Wu Y2ORCID

Affiliation:

1. Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

2. Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China

Abstract

Background The immune system is one of the most complex regulatory systems in the body and is essential for the maintenance of homeostasis. Despite recent breakthroughs in immunology, the regulation of the immune system and the etiology of autoimmune diseases such as lupus remain unclear. Systemic lupus erythematosus is a systemic autoimmune disease with abnormally and inconsistently expressed pro-inflammatory cytokines. Pyroptosis is a pro-inflammatory form of programmed cell death that is associated with systemic lupus erythematosus. The thymus and spleen are important immune organs involved in systemic lupus erythematosus. Therefore, this study investigated the difference in expression of pyroptosis-inducing pro-inflammatory cytokines between the spleen and thymus in lupus model mice and in control mice, to describe immune regulation at the organ level. Objective To investigate differences in the expression of pyroptosis-inducing cytokines in the spleen and thymus and to explore immune regulatory networks at the organ level. Methods Two groups of lupus mice and two groups of control mice were utilized for this study. Using the thymus and spleen of experimental animals, mRNA expression levels of five pyroptosis-inducing cytokines (interleukin 1β, interleukin 18, NLRP3, caspase-1 and TNF-α) were determined via quantitative polymerase chain reaction. In addition, tissue distribution of these cytokines was investigated via immunohistochemistry. Results All five pyroptosis-inducing inflammatory cytokines showed higher expression in the spleen than in the thymus ( p < 0.05). Moreover, the spleen/thymus expression ratios of all five pyroptosis-inducing cytokines were not statistically different between the four experimental groups. Expression of all five cytokines exhibited a stable ratio (spleen/thymus ratios). This distinctive stable spleen/thymus ratio was consistent in all four experimental groups. The stable spleen/thymus ratios of the five inflammatory cytokines were as follows: interleukin 1β (2.02 ± 0.9), interleukin 18 (2.07 ± 1.06), caspase-1 (1.93 ± 0.66), NLRP3 (3.14 ± 1.61) and TNF-α (3.16 ± 1.36). Immunohistochemical analysis showed the cytokines were mainly expressed in the red pulp region of the spleen and the medullary region of the thymus, where immune-activated cells aggregated. Conclusion The stable spleen/thymus expression ratios of pyroptosis-inducing cytokines indicated that immune organs exhibit strictly regulated functions to maintain immune homeostasis and adapt to the environment.

Publisher

SAGE Publications

Subject

Rheumatology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3