Characterization of the metabolic phenotype of chronically activated lymphocytes

Author:

Wahl DR1,Petersen B.2,Warner R.2,Richardson BC3,Glick GD4,Opipari AW5

Affiliation:

1. Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109, USA

2. Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA

3. Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA

4. Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109, USA, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA,

5. Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA,

Abstract

Activated lymphocytes proliferate, secrete cytokines, and can make antibodies. Normally activated B and T cells meet the bioenergetic demand for these processes by up-regulating aerobic glycolysis. In contrast, several lines of evidence suggest that pathogenic lymphocytes in autoimmune diseases like lupus meet ATP demands through oxidative phosphorylation. Using 13C-glucose as a stable tracer, we found that splenocytes from mice with lupus derive the same fraction of lactate from glucose as control animals, suggesting comparable levels of glycolysis and non-oxidative ATP production. However, lupus splenocytes increase glucose oxidation by 40% over healthy control animals. The ratio between pentose phosphate cycle (PPC) activity and glycolysis is the same for each group, indicating that increased glucose oxidation is due to increased activity of the TCA cycle in lupus splenocytes. Repetitive stimulation of cultured human T cells was used to model chronic lymphocyte activation, a phenotype associated with lupus. Chronically activated T cells rely primarily on oxidative metabolism for ATP synthesis suggesting that chronic antigen stimulation may be the basis for the metabolic findings observed in lupus mice. Identification of disease-related bioenergetic phenotypes should contribute to new diagnostic and therapeutic strategies for immune diseases.

Publisher

SAGE Publications

Subject

Rheumatology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3