Robust Hit Identification by Quality Assurance and Multivariate Data Analysis of a High-Content, Cell-Based Assay

Author:

Dürr Oliver1,Duval François2,Nichols Anthony2,Lang Paul2,Brodte Annette3,Heyse Stephan3,Besson Dominique2

Affiliation:

1. Genedata AG, Basel, Switzerland,

2. Merck Serono International SA, Geneva, Switzerland

3. Genedata AG, Basel, Switzerland

Abstract

Recent technological advances in high-content screening instrumentation have increased its ease of use and throughput, expanding the application of high-content screening to the early stages of drug discovery. However, high-content screens produce complex data sets, presenting a challenge for both extraction and interpretation of meaningful information. This shifts the high-content screening process bottleneck from the experimental to the analytical stage. In this article, the authors discuss different approaches of data analysis, using a phenotypic neurite outgrowth screen as an example. Distance measurements and hierarchical clustering methods lead to a profound understanding of different high-content screening readouts. In addition, the authors introduce a hit selection procedure based on machine learning methods and demonstrate that this method increases the hit verification rate significantly (up to a factor of 5), compared to conventional hit selection based on single readouts only. ( Journal of Biomolecular Screening 2007:1042-1049)

Publisher

Elsevier BV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3