Optimization and Application of Median Filter Corrections to Relieve Diverse Spatial Patterns in Microtiter Plate Data

Author:

Bushway Paul J.1,Azimi Behrad2,Heynen-Genel Susanne1

Affiliation:

1. Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.

2. Vala Sciences, Inc., San Diego, CA, USA.

Abstract

The standard (STD) 5 × 5 hybrid median filter (HMF) was previously described as a nonparametric local backestimator of spatially arrayed microtiter plate (MTP) data. As such, the HMF is a useful tool for mitigating global and sporadic systematic error in MTP data arrays. Presented here is the first known HMF correction of a primary screen suffering from systematic error best described as gradient vectors. Application of the STD 5 × 5 HMF to the primary screen raw data reduced background signal deviation, thereby improving the assay dynamic range and hit confirmation rate. While this HMF can correct gradient vectors, it does not properly correct periodic patterns that may present in other screening campaigns. To address this issue, 1 × 7 median and a row/column 5 × 5 hybrid median filter kernels (1 × 7 MF and RC 5 × 5 HMF) were designed ad hoc, to better fit periodic error patterns. The correction data show periodic error in simulated MTP data arrays is reduced by these alternative filter designs and that multiple corrective filters can be combined in serial operations for progressive reduction of complex error patterns in a MTP data array.

Publisher

Elsevier BV

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Physicochemical Measurements to Influence Better Compound Design;SLAS DISCOVERY: Advancing the Science of Drug Discovery;2019-08-20

2. Compound Functional Prediction Using Multiple Unrelated Morphological Profiling Assays;SLAS TECHNOLOGY: Translating Life Sciences Innovation;2017-11-03

3. Improving Detection of Rare Biological Events in High-Throughput Screens;Journal of Biomolecular Screening;2014-09-04

4. Quality control of cell-based high-throughput drug screening;Acta Pharmaceutica Sinica B;2012-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3