Affiliation:
1. ACEA Biosciences, San Diego, California
Abstract
Kinases are the 2nd largest group of therapeutic targets in the human genome. In this article, a label-free and real-time cell-based receptor tyrosine kinase (RTK) assay that addresses limitation of existing kinase assays and can be used for high-throughput screening and lead optimization studies was validated and characterized. Using impedance, growth factor-induced morphological changes were quantitatively assessed in real time and used as a measure of RTK activity. COS7 cells treated with epidermal growth factor (EGF) and insulin results in a rapid increase in cell impedance. Assessment of these growth factor-induced morphological changes and levels of receptor autophosphorylation using fluorescent microscopy and enzyme-linked immunosorbent assay, respectively, demonstrates that these changes correlate with changes in impedance. This assay was used to screen, identify, and characterize a potent EGF receptor inhibitor from a compound library. This report describes an assay that is simple in that it does not require intensive optimization or special reagents such as peptides, antibodies, or probes. More important, because the assay is cell based, the studies are done in a physiologically relevant environment, allowing for concurrent assessment of a compound’s solubility, stability, membrane permeability, cytotoxicity, and off-target interaction effects. ( Journal of Biomolecular Screening 2006:634-643)
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献