Morphological Evaluation of Nonlabeled Cells to Detect Stimulation of Nerve Growth Factor Expression by Lyconadin B

Author:

Kawai Shun1,Sasaki Hiroto2,Okada Norihiro1,Kanie Kei1,Yokoshima Satoshi3,Fukuyama Tohru3,Honda Hiroyuki2,Kato Ryuji1

Affiliation:

1. Division of Bioscience, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan

2. Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan

3. Division of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan

Abstract

The success of drug development is greatly influenced by the efficiency of drug screening methods. Recently, phenotype-based screens have raised expectations, based on their proven record of identifying first-in-class drugs at a higher rate. Although fluorescence images are the data most commonly used in phenotype-based cell-based assays, nonstained cellular images have the potential to provide new descriptive information about cellular responses. In this study, we applied morphology-based evaluation of nonlabeled microscopic images to a phenotype-based assay. As a study case, we attempted to increase the efficiency of a cell-based assay for chemical compounds that induce production of nerve growth factor (NGF), using lyconadin B as a model compound. Because the total synthesis of lyconadin B was accomplished very recently, there is no well-established cell-based assay scheme for further drug screening. The conventional cell-based assay for evaluating NGF induction requires two types of cells and a total of 5 days of cell culture. The complexity and length of this assay increase both the risk of screening errors and the cost of screening. Our findings show that analysis of cellular morphology enables evaluation of NGF induction by lyconadin B within only 9 h.

Publisher

Elsevier BV

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3