Comparison of Assay Technologies for a Tyrosine Kinase Assay Generates Different Results in High Throughput Screening

Author:

Sills Matthew A.1,Weiss Donna1,Pham Quynhchi1,Schweitzer Robert1,Wu Xiang1,Wu Jinzi J.2

Affiliation:

1. Novartis Institute for Biomedical Research, Summit, NJ

2. Immunex Corporation, Seattle, WA

Abstract

In today's high-throughput screening (HTS) environment, an increasing number of assay detection technologies are routinely utilized in lead finding programs. Because of the relatively broad applicability of several of these technologies, one is often faced with a choice of which technology to utilize for a specific assay. The aim of this study was to address the question of whether the same compounds would be identified from screening a set of samples in three different versions of an HTS assay. Here, three different versions of a tyrosine kinase assay were established using scintillation proximity assay (SPA), homogeneous time-resolved fluorescence resonance energy transfer (HTR-FRET), and fluorescence polarization (FP) technologies. In this study, 30,000 compounds were evaluated in each version of the kinase assay in primary screening, deconvolution, and dose-response experiments. From this effort, there was only a small degree of overlap of active compounds identified subsequent to the deconvolution experiment. When all active compounds were then profiled in all three assays, 100 and 101 active compounds were identified in the HTR-FRET and FP assays, respectively. In contrast, 40 compounds were identified in the SPA version of the kinase assay, whereas all of these compounds were detected in the HTR-FRET assay only 35 were active in the FP assay. Although there was good correlation between the IC50 values obtained in the HTR-FRET and FP assays, poor correlations were obtained with the IC50 values obtained in the SPA assay. These findings suggest that significant differences can be observed from HTS depending on the assay technology that is utilized, particularly in assays with high hit rates.

Publisher

Elsevier BV

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hypnotic effect of AR-001 through adenosine A1 receptor;European Journal of Pharmacology;2024-10

2. Assays;The Handbook of Medicinal Chemistry;2023-02-03

3. LSA-50 paper: An alternative to P81 phosphocellulose paper for radiometric protein kinase assays;Analytical Biochemistry;2021-10

4. Development of a Testing Funnel for Identification of Small-Molecule Modulators Targeting Secretin Receptors;SLAS DISCOVERY: Advancing the Science of Drug Discovery;2020-08-04

5. An HTRF® Assay for the Protein Kinase ATM;Methods in Molecular Biology;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3