Assay Development and High-Throughput Screening for Inhibitors of Kaposi’s Sarcoma–Associated Herpesvirus N-Terminal Latency-Associated Nuclear Antigen Binding to Nucleosomes

Author:

Beauchemin Chantal1,Moerke Nathan J.2,Faloon Patrick3,Kaye Kenneth M.1

Affiliation:

1. Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA

2. Department of Systems Biology, Harvard Medical School, Boston, MA, USA

3. Broad Institute, Center for the Science of Therapeutics, Therapeutics Platform, Cambridge, USA

Abstract

Kaposi’s sarcoma–associated herpesvirus (KSHV) has a causative role in several human malignancies, especially in immunocompromised hosts. KSHV latently infects tumor cells and persists as an extrachromosomal episome (plasmid). KSHV latency-associated nuclear antigen (LANA) mediates KSHV episome persistence. LANA binds specific KSHV sequence to replicate viral DNA. In addition, LANA tethers KSHV genomes to mitotic chromosomes to efficiently segregate episomes to daughter nuclei after mitosis. N-terminal LANA (N-LANA) binds histones H2A and H2B to attach to chromosomes. Currently, there are no specific inhibitors of KSHV latent infection. To enable high-throughput screening (HTS) of inhibitors of N-LANA binding to nucleosomes, here we develop, miniaturize, and validate a fluorescence polarization (FP) assay that detects fluorophore-labeled N-LANA peptide binding to nucleosomes. We also miniaturize a counterscreen to identify DNA intercalators that nonspecifically inhibit N-LANA binding to nucleosomes, and also develop an enzyme-linked immunosorbent assay to assess N-LANA binding to nucleosomes in the absence of fluorescence. HTS of libraries containing more than 350,000 compounds identified multiple compounds that inhibited N-LANA binding to nucleosomes. No compounds survived all counterscreens, however. More complex small-molecule libraries will likely be necessary to identify specific inhibitors of N-LANA binding to histones H2A and H2B; these assays should prove useful for future screens.

Publisher

Elsevier BV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3