Development of a Fluorescence-Based, Ultra High-Throughput Screening Platform for Nanoliter-Scale Cytochrome P450 Microarrays

Author:

Sukumaran Sumitra M.1,Potsaid Benjamin2,Lee Moo-Yeal3,Clark Douglas S.4,Dordick Jonathan S.5

Affiliation:

1. Department of Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York

2. Center for Automation Technologies and Systems, Rensselaer Polytechnic Institute, Troy, New York

3. Department of Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, Solidus Biosciences, Inc., Troy, New York

4. Department of Chemical Engineering, University of California, Berkeley,

5. Department of Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, Department of Biology, Rensselaer Polytechnic Institute, Troy, New York

Abstract

Cytochrome P450 enzyme (CYP450s) assays are critical enzymes in early-stage lead discovery and optimization in drug development. Currently available fluorescence-based reaction assays provide a rapid and reliable method for monitoring CYP450 enzyme activity but are confined to medium-throughput well-plate systems. The authors present a high-throughput, integrated screening platform for CYP450 assays combining enzyme encapsulation techniques, microarraying methods, and wide-field imaging. Alginate-containing microarrays consisting of up to 1134 CYP450 reaction elements were fabricated on functionalized glass slides (reaction volumes 20 to 80 nL, total enzyme content in pg) and imaged to yield endpoint activity, stability, and kinetic data. A charge-coupled device imager acquired quantitative, high-resolution images of a 20 × 20 mm area/snapshot using custom-built wide-field optics with telecentric lenses and easily interchangeable filter sets. The imaging system offered a broad dynamic intensity range (linear over 3 orders of magnitude) and sensitivity down to fluorochrome quantities of <5 fmols, with read accuracy similar to a laser scanner or a fluorescence plate reader but with higher throughput. Rapid image acquisition enabled analysis of CYP450 kinetics. Fluorogenic assays with CYP3A4, CYP2C9, and CYP2D6 on the alginate microarrays exhibited Z′ factors ranging from 0.75 to 0.85, sensitive detection of inhibitory compounds, and reactivity comparable to that in solution, thereby demonstrating the reliability and accuracy of the microarray platform. This system enables for the first time a significant miniaturization of CYP enzyme assays with significant conservation of assay reagents, greatly increased throughput, and no apparent loss of enzyme activity or assay sensitivity. ( Journal of Biomolecular Screening 2009:668-678)

Publisher

Elsevier BV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3