Use of FLIPR Membrane Potential Dyes for Validation of High-Throughput Screening with the FLIPR and µARCS Technologies: Identification of Ion Channel Modulators Acting on the GABAA Receptor

Author:

Joesch Christoph1,Guevarra Emelie1,Parel Serge P.1,Bergner Andreas1,Zbinden Peter1,Konrad Daniel2,Albrecht Hugo3

Affiliation:

1. Biofocus DPI AG, Allschwil, Switzerland

2. bSys Biological Monitoring Systems GmbH, Witterswil, Switzerland

3. Biofocus DPI AG, Allschwil, Switzerland, , University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland

Abstract

Fluorometric imaging plate reader (FLIPR) membrane potential dyes (FMP-Red-Dye and FMP-Blue-Dye) were evaluated for the detection of compounds acting either as positive allosteric modulators or agonists on the GABAA receptor (GABAAR). A stable HEK293 cell line with constitutive expression of the rat GABA AR α1, β2, and γ2 genes was used to establish a functional high-throughput screening (HTS) assay based on measurement of the membrane potential change in living cells. The assay was validated with the FLIPR technology for identification of agonists and positive allosteric modulators using GABA and diazepam as model compounds. The FMP-Red-Dye showed better performance than the FMP-Blue-Dye, and the effects induced by GABA and diazepam were comparable to electrophysiology data. Subsequently, the assay was also validated with an ultra-HTS approach known as microarrayed compound screening (µARCS). The LOPAC library was used in a test screen for an initial assessment of the technology. Finally, the FLIPR and µARCS technologies were tested with a larger screening campaign. A focused library of 3520 putative positive modulators was tested with the FLIPR assay, and a diverse subset of 84,480 compounds was selected for screening with the µARCS technology. All hits were subjected to verification using the FLIPR technology, and confirmed hits were subsequently evaluated by EC50 determination. Finally, selected hits were further confirmed with electrophysiology testing. ( Journal of Biomolecular Screening 2008:218-228)

Publisher

Elsevier BV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3