High-Throughput Screen Identifies Cyclic Nucleotide Analogs That Inhibit Prostatic Acid Phosphatase

Author:

McCoy Eric S.1,Lea Wendy A.2,Mott Bryan T.2,Maloney David J.2,Jadhav Ajit2,Simeonov Anton2,Zylka Mark J.1

Affiliation:

1. University of North Carolina, Chapel Hill, NC, USA

2. National Institutes of Health, Bethesda, MD, USA

Abstract

The secretory and transmembrane isoforms of prostatic acid phosphatase (PAP) can dephosphorylate extracellular adenosine 5′-monophosphate (AMP) to adenosine, classifying PAP as an ectonucleotidase. Currently, there are no compounds that inhibit PAP in living cells. To identify small-molecule modulators of PAP, we used a 1536-well–based quantitative high-throughput fluorogenic assay to screen the Library of Pharmacologically Active Compounds (LOPAC1280) arrayed as eight-concentration dilution series. This fluorogenic assay used difluoro-4-methylumbelliferyl phosphate as substrate and collected data in kinetic mode. Candidate hits were subsequently tested in an orthogonal absorbance-based biochemical assay that used AMP as substrate. From these initial screens, three inhibitors of secretory human (h) and mouse (m)PAP were identified: 8-(4-chlorophenylthio) cAMP (pCPT-cAMP), calmidazolium chloride, and nalidixic acid. These compounds did not inhibit recombinant alkaline phosphatase. Of these compounds, only pCPT-cAMP and a related cyclic nucleotide analog (8-[4-chlorophenylthio] cGMP; pCPT-cGMP) inhibited the ectonucleotidase activity of transmembrane PAP in a cell-based assay. These cyclic nucleotides are structurally similar to AMP but cannot be hydrolyzed by PAP. In summary, we identified two cyclic nucleotide analogs that inhibit secretory and transmembrane PAP in vitro and in live cells.

Publisher

Elsevier BV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3