Homogeneous, Bioluminescent Protease Assays: Caspase-3 as a Model

Author:

O’Brien Martha A.1,Daily William J.2,Hesselberth P. Eric2,Moravec Richard A.1,Scurria Michael A.2,Klaubert Dieter H.2,Bulleit Robert F.1,Wood Keith V.1

Affiliation:

1. Promega Corporation, Madison, WI

2. Promega Biosciences, Inc., San Luis Obispo, CA

Abstract

Using caspase-3 as a model, the authors have developed a strategy for highly sensitive, homogeneous protease assays suitable for high-throughput, automated applications. The assay uses peptide-conjugated aminoluciferin as the protease substrate and a firefly luciferase that has been molecularly evolved for increased stability. By combining the proluminescent caspase-3 substrate, Z-DEVD-aminoluciferin, with a stabilized luciferase in a homogeneous format, the authors developed an assay that is significantly faster and more sensitive than fluorescent caspase-3 assays. The assay has a single-step format, in which protease cleavage of the substrate and luciferase oxidation of the aminoluciferin occurs simultaneously. Because these processes are coupled, they rapidly achieve steady state to maintain stable luminescence for several hours. Maximum sensitivity is attained when this steady state occurs; consequently, this coupled-enzyme system results in a very rapid assay. The homogeneous format inherently removes trace contamination by free aminoluciferin, resulting in extremely low background and yielding exceptionally high signal-to-noise ratios and excellent Z′ factors. Another advantage of a luminescent format is that it avoids problems of cell autofluorescence or fluorescence interference that can be associated with synthetic chemical and natural product libraries. This bioluminescent, homogeneous format should be widely applicable to other protease assays.

Publisher

Elsevier BV

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3