Aptamer Displacement Screen for Flaviviral RNA Methyltransferase Inhibitors

Author:

Falk Shaun P.1,Weisblum Bernard1

Affiliation:

1. Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA

Abstract

RNA-protein interactions are vital to the replication of the flaviviral genome. Discovery focused on small molecules that disrupt these interactions represent a viable path for identification of new inhibitors. The viral RNA (vRNA) cap methyltransferase (MTase) of the flaviviruses has been validated as a suitable drug target. Here we report the development of a high-throughput screen for the discovery of compounds that target the RNA binding site of flaviviral protein NS5A. The assay described here is based on displacement of an MT-bound polynucleotide aptamer, decathymidylate derivatized at its 5′ end with fluorescein (FL-dT10). Based on the measurement of fluorescence polarization, FL-dT10 bound to yellow fever virus (YFV) MTase in a saturable manner with a Kd = 231 nM. The binding was reversed by a 250-nucleotide YFV messenger RNA (mRNA) transcript and by the triphenylmethane dye aurintricarboxylic acid (ATA). The EC50 for ATA displacement was 1.54 µM. The MTase cofactors guanosine-5′-triphosphate and S-adenosyl-methionine failed to displace FL-dT10. Analysis by electrophoretic mobility shift assay (EMSA) suggests that ATA binds YFV MTase so as to displace the vRNA. The assay was determined to have a Z′ of 0.83 and was successfully used to screen a library of known bioactives.

Publisher

Elsevier BV

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Challenges with the discovery of RNA-based therapeutics for flaviviruses;Expert Opinion on Drug Discovery;2023-03-30

2. Chemical biology and medicinal chemistry of RNA methyltransferases;Nucleic Acids Research;2022-04-12

3. Aptamers isolated against mosquito-borne pathogens;World Journal of Microbiology and Biotechnology;2021-07-09

4. Inhibition of Orbivirus Replication by Aurintricarboxylic Acid;International Journal of Molecular Sciences;2020-10-02

5. Nucleic acid aptamers improving fluorescence anisotropy and fluorescence polarization assays for small molecules;TrAC Trends in Analytical Chemistry;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3