Next-Generation qPCR for the High-Throughput Measurement of Gene Expression in Multiple Leukocyte Subsets

Author:

Adamski Mateusz G.12,Li Yan1,Wagner Erin1,Yu Hua1,Seales-Bailey Chloe1,Soper Steven A.3,Murphy Michael4,Baird Alison E.1

Affiliation:

1. Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA

2. Department of Neurology, Jagiellonian University Medical College, Krakow, Poland

3. University of North Carolina, Chapel Hill, NC, USA

4. Louisiana State University, Baton Rouge, LA, USA

Abstract

Clinical studies of gene expression are increasingly using the whole blood, peripheral blood mononuclear cells, and leukocyte subsets involved in the innate and adaptive immune responses. However, the small amount of RNA available in the clinical setting is a limitation for commonly used methods such as quantitative polymerase chain reactions (qPCR) and microarrays. Our aim was to design 96 gene assays to simultaneously measure gene expression in the whole blood and seven leukocyte subsets using a new-generation qPCR method—high-throughput nanofluidic reverse transcription qPCR (HT RT-qPCR). The leukocyte subset purity was 94% to 98% for seven subsets and was less for the γδ T-cell receptor subset (80%). The HT RT-qPCR replicate sample measurements were highly reproducible ( r = 0.997, p < 2.2 × 10−16), and the ΔΔCt values from HT RT-qPCR correlated significantly with those from qPCR. The control genes were differentially expressed across the eight leukocyte subsets in the control subjects ( p = 1.3 × 10−5, analysis of variance). Two analytical methods, absolute and relative, gave concordant results and were significantly correlated ( p = 1.9 × 10−9). HT RT-qPCR permits the rapid, reproducible, and quantitative measurement of multiple transcripts using minimal sample amounts. The protocol described yielded leukocyte subsets of high purity and identified two analytic methods for use.

Publisher

Elsevier BV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3