Detection of Phospholipidosis Induction

Author:

Shahane Sampada A.1,Huang Ruili1,Gerhold David1,Baxa Ulrich2,Austin Christopher P.1,Xia Menghang1

Affiliation:

1. National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA

2. Electron Microscopy Laboratory, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA

Abstract

Drug-induced phospholipidosis is characterized by the accumulation of intracellular phospholipids in cells exposed to cationic amphiphilic drugs. The appearance of unicentric or multicentric multilamellar bodies viewed under an electron microscope (EM) is the morphological hallmark of phospholipidosis. Although the EM method is the gold standard for detecting cellular phospholipidosis, this method has its drawbacks, including low throughput, high cost, and unsuitability for screening a large chemical library. In this study, a cell-based phospholipidosis assay has been developed using the LipidTOX Red reagent in HepG2 cells and miniaturized into a 1536-well plate format. To validate this assay for high-throughput screening (HTS), the LOPAC library of 1280 compounds was screened using a quantitative HTS platform. A group of known phospholipidosis inducers, such as amiodarone, propranolol, chlorpromazine, desipramine, promazine, clomipramine, and amitriptyline, was identified by the screen, consistent with previous reports. Several novel phospholipidosis inducers, including NAN-190, ebastine, GR127935, and cis-(Z)-flupentixol, were identified in this study and confirmed using the EM method. These results demonstrate that this assay can be used to evaluate and profile large numbers of chemicals for drug-induced phospholipidosis.

Publisher

Elsevier BV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3