Analysis of Toxin-Induced Changes in Action Potential Shape for Drug Development

Author:

Akanda Nesar1,Molnar Peter1,Stancescu Maria1,Hickman James J.2

Affiliation:

1. NanoScience Technology Center, University of Central Florida, Orlando

2. NanoScience Technology Center, University of Central Florida, Orlando,

Abstract

The generation of an action potential (AP) is a complex process in excitable cells that involves the temporal opening and closing of several voltage-dependent ion channels within the cell membrane. The shape of an AP can carry information concerning the state of the involved ion channels as well as their relationship to cellular processes. Alteration of these ion channels by the administration of toxins, drugs, and biochemicals can change the AP’s shape in a specific way, which can be characteristic for a given compound. Thus, AP shape analysis could be a valuable tool for toxin classification and the measurement of drug effects based on their mechanism of action. In an effort to begin classifying the effect of toxins on the shape of intracellularly recorded APs, patch-clamp experiments were performed on NG108-15 hybrid cells in the presence of veratridine, tetraethylammonium, and quinine. To analyze the effect, the authors generated a computer model of the AP mechanism to determine to what extent each ion channel was affected during compound administration based on the changes in the model parameters. This work is a first step toward establishing a new assay system for toxin detection and identification by AP shape analysis.

Publisher

Elsevier BV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3