A High-Throughput Screen to Identify LRRK2 Kinase Inhibitors for the Treatment of Parkinson’s Disease Using RapidFire Mass Spectrometry

Author:

Leveridge Melanie1,Collier Lee12,Edge Colin1,Hardwicke Phil1,Leavens Bill1,Ratcliffe Steve1,Rees Mike1,Stasi Luigi Piero34,Nadin Alan1,Reith Alastair D.3

Affiliation:

1. Department of Platform Technology and Science, GlaxoSmithKline Pharmaceuticals R&D, Hertfordshire, UK

2. Cancer Research Technology, Babraham Research Campus, Cambridge, UK

3. Neurodegeneration DPU, Neurosciences Therapy Area Unit, GlaxoSmithKline, Pharmaceuticals R&D, Hertfordshire, UK, and Pudong, China

4. Nuevolution A/S, Rønnegade 8, DK-2100 Copenhagen, Denmark

Abstract

LRRK2 is a large multidomain protein containing two functional enzymatic domains: a GTPase domain and a protein kinase domain. Dominant coding mutations in the LRRK2 protein are associated with Parkinson’s disease (PD). Among such pathogenic mutations, Gly2019Ser mutation in the LRRK2 kinase domain is the most frequent cause of familial PD in Caucasians and is also found in some apparently sporadic PD cases. This mutation results in 2- to 3-fold elevated LRRK2 kinase activity compared with wild type, providing a clear clinical hypothesis for the application of kinase inhibitors in the treatment of this disease. To date, reported screening assays for LRRK2 have been based on detection of labeled adenosine triphosphate and adenosine diphosphate or on antibody-based detection of phosphorylation events. While these assays do offer a high-throughput method of monitoring LRRK2 kinase activity, they are prone to interference from autofluorescent compounds and nonspecific events. Here we describe a label-free assay for LRRK2 kinase activity using the RapidFire mass spectrometry system. This assay format was found to be highly robust and enabled a screen of 100,000 lead-like small molecules. The assay successfully identified a number of known LRRK2 chemotypes that met stringent physicochemical criteria.

Publisher

Elsevier BV

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3