Development and Application of a High-Throughput Screening Assay for HIV-1 Integrase Enzyme Activities

Author:

John Sinu1,Fletcher Thomas M.2,Jonsson Colleen B.3

Affiliation:

1. Graduate Program, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham

2. High Throughput Screening and Target Development Program, Southern Research Institute, Birmingham, AL

3. Department of Biochemistry and Molecular Biology, 2000 9th Avenue South, Southern Research Institute, Birmingham, AL

Abstract

Integrase (IN) mediates the covalent insertion of the retroviral genome into its host chromosomal DNA. This enzymatic activity can be reconstituted in vitro with short DNA oligonucleotides, which mimic a single viral DNA end, and purified IN. Herein we report a highly efficient and sensitive high-throughput screen, HIV Integrase Target SRI Assay (HITS™), for HIV-1 IN activity using 5′ biotin-labeled DNA (5′ BIO donor) and 3′ digoxygenin-labeled DNA (3′ DIG target). Following 3′ processing of the 5′ BIO donor, strand transfer proceeds with integration of the 5′ BIO donor into the 3′ DIG target. Products were captured on a streptavidin-coated microplate and the amount of DIG retained in the well was measured. The end point values, measured as absorbance, ranged from 0.9 to 1.5 for IN-mediated reactions as compared with background readings of 0.05 to 0.12. The Z factor for the assay ranged from 0.7 to 0.85. The assay was used to screen drugs in a high-throughput format, and furthermore, we adapted the assay to study mechanistic questions regarding the integration process. For example, using variations of the assay format, we showed high preference of E strand of the long terminal repeat (LTR) viral DNA as a target strand compared with its complementary A strand. The E strand is the strand processed by IN. Furthermore, we explored the reported inhibitory effect of reverse transcriptase on integration.

Publisher

Elsevier BV

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3