Development of a High-Throughput Assay to Measure Histidine Decarboxylase Activity

Author:

August E. Michael1,Patnaude Lori1,Hopkins Jerry2,Studts Joey2,Gautschi Elda2,Shrutkowski Anthony2,Kronkaitis Anthony2,Brown Martha2,Kabcenell Alisa3,Rajotte Daniel3

Affiliation:

1. Department of Medicinal Chemistry, Biologics and Biomolecular Sciences,Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT

2. Department of Medicinal Chemistry and Cardiovascular Disease, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT

3. Department of Medicinal Chemistry, Research and Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT

Abstract

Histamine is a well-known mediator of allergic, inflammatory, and neurological responses. More recent studies suggest a role for histamine and its receptors in a wide range of biological processes, including T-cell maturation and bone remodeling. Histamine serum levels are regulated mainly by the activity of the histamine-synthesizing enzyme histidine decarboxylase (HDC). Despite the importance of this enzyme in many physiological processes, very few potent HDC inhibitors have been identified. HDC assays suitable for high-throughput screening have not been reported. The authors describe the development of a fluorescence polarization assay to measure HDC enzymatic activity. They used a fluorescein-histamine probe that binds with high affinity to an antihistamine antibody for detection. Importantly, they show that probe binding is fully competed by histamine, but no competition by the HDC substrate histidine was observed. The automated assay was performed in a total volume of 60 μL, had an assay window of 80 to 100 mP, and had a Z′ factor of 0.6 to 0.7. This assay provides new tools to study HDC activity and pharmacological modulation of histamine levels.

Publisher

Elsevier BV

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3