Luciferin IPA–Based Higher Throughput Human Hepatocyte Screening Assays for CYP3A4 Inhibition and Induction

Author:

Doshi Utkarsh1,Li Albert P.1

Affiliation:

1. Advanced Pharmaceutical Sciences, Inc. and In Vitro ADMET Laboratories, LLC, Columbia, MD, USA

Abstract

The authors report here higher throughput screening (HTS) assays for the evaluation of CYP3A4 inhibition and CYP3A4 induction in human hepatocytes using a novel CYP3A4 substrate, luciferin IPA (LIPA). Using human recombinant CYP450 isoforms, LIPA was found to be metabolized extensively by CYP3A4 but not by CYP1A2, CYP2C9, CYP2C19, CYP2D6, or CYP2E1. In the 384-well plate CYP3A4 inhibition assay, the known inhibitors 1-aminobenzotriazole, erythromycin, ketoconazole, and verapamil were found to cause extensive (maximum inhibition of >80%), dose-dependent, statistically significant inhibition of LIPA metabolism. The non-CYP3A4 inhibitors diethyldithiocarbamate, quercetin, quinidine, sulfaphenazole, ticlopidine, and tranylcypromine were found to have substantially lower (maximum inhibition of <50%) or no apparent inhibitory effects in the HTS assay. In the 96-well plate induction assay, the CYP3A4 inducers rifampin, phenobarbital, carbamazepine, phenytoin, troglitazone, rosiglitazone, and pioglitazone yielded dose-dependent induction of LIPA metabolism, whereas the CYP1A2 inducers omeprazole and 3-methylcholanthrene did not display any induction in the CYP3A4 activity. The high sensitivity and specificity of the assays, the relative ease of execution, and reduced cost, time, and test material requirements suggest that the HTS assays may be applied routinely for screening a large number of chemicals in the drug discovery phase for CYP3A4 inhibitory and inducing potential.

Publisher

Elsevier BV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3