Rapid and Quantitative Assessment of Cell Quality, Identity, and Functionality for Cell-Based Assays Using Real-Time Cellular Analysis

Author:

Irelan Jeffrey T.1,Wu Meng-Jou1,Morgan Jonathan2,Ke Ning1,Xi Biao1,Wang Xiaobo1,Xu Xiao1,Abassi Yama A.1

Affiliation:

1. ACEA Biosciences, Inc., San Diego, California.

2. American Type Culture Collection, Manassas, Virginia.

Abstract

Strict quality control of cells is required for the standardization and interpretation of results in all areas of cell-based research, especially in drug discovery. Real-time cellular analysis using electrical impedance as a readout offers a rapid and highly reproducible method for quality control as it provides a quantitative measure of overall cell morphology and growth. In a case study, the authors demonstrate that samples of a single cell line obtained from several different labs show clear differences in their impedance profiles when compared with the corresponding standard cell line. A number of kinetic parameters were derived from the impedance profiles and used to quantify the differences among these cell lines. Our findings indicate that this methodology can detect cell line differences including mix-ups or contaminations, genetic alterations, and potential epigenetic changes occurring during passaging, all of which can occur in the time scale of a screening campaign. Finally, we provide evidence that these impedance profile differences can be predictive of different outcomes in cell-based functional assays for the effects of small molecules on otherwise seemingly identical cell lines.

Publisher

Elsevier BV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3