A New Method with Flexible and Balanced Control of False Negatives and False Positives for Hit Selection in RNA Interference High-Throughput Screening Assays

Author:

Zhang Xiaohua Douglas

Abstract

The z-score method and its variants for testing mean difference are commonly used for hit selection in high-throughput screening (HTS) assays. Strictly standardized mean difference (SSMD) offers a way to measure and classify the short interfering RNA (siRNA) effects. In this article, based on SSMD, the authors propose a new testing method for hit selection in RNA interference (RNAi) HTS assays. This SSMD-based method allows the differentiation between siRNAs with large and small effects on the assay output and maintains flexible and balanced control of both the false-negative rate, in which the siRNAs with strong effects are not selected as hits, and the restricted false-positive rate, in which the siRNAs with weak or no effects are selected as hits. This method directly addresses the size of siRNA effects represented by the strength of difference between an siRNA and a negative reference, whereas the classic z-score method and t-test of testing no mean difference address whether the mean of an siRNA is exactly the same as the mean of a negative reference. This method can readily control the false-negative rate, whereas it is nontrivial for the classic z-score method and t-test to control the false-negative rate. Therefore, theoretically, the SSMD-based method offers better control of the sizes of siRNA effects and the associated false-positive and false-negative rates than the commonly used z-score method and t-test for hit selection in HTS assays. The SSMD-based method should generally be applicable to any assay in which the end point is a difference in signal compared to a reference sample, including those for RNAi, receptor, enzyme, and cellular function. (Journal of Biomolecular Screening 2007:645-655)

Publisher

Elsevier BV

Reference29 articles.

1. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans

2. Hannon GJ, Zamore PD: Small RNAs, big biology: biochemical studies of RNA interference. In Hannon GJ (ed): RNAi: A Guide to Gene Silencing. New York: Cold Spring Harbor Laboratory Press, 2003:87-108.

3. Translating RNA interference into therapies for human disease

4. Silent running: the race to the clinic

5. A cell-based β-lactamase reporter gene assay for the identification of inhibitors of hepatitis C virus replication

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3