Development of a Miniaturized 384-Well High Throughput Screen for the Detection of Substrates of Cytochrome P450 2D6 and 3A4 Metabolism

Author:

Kariv Ilona1,Fereshteh Mark P.1,Oldenburg Kevin R.2

Affiliation:

1. Leads Discovery Department, DuPont Pharmaceuticals Company, Wilmington, DE

2. MatriCal, Inc., Chadds Ford, PA

Abstract

The identification of a large number of biologically active chemical entities during high throughput screening (HTS) necessitates the incorporation of new strategies to identify compounds with druglike properties early during the lead prioritization and development process. One of the major steps in lead prioritization is the assessment of drug metabolism mediated by the cytochrome P450 (CYP) enzymes to evaluate the potential drug-drug interactions. CYP2D6 and CYP3A4 comprise the main human CYP enzymes involved in drug metabolism. The recent availability of specific CYP cDNA expression systems and the development of specific fluorescent probes have accelerated the ability to develop robust in vitro assays in HTS format. The aim of this study was to optimize conditions for the CYP2D6 and CYP3A4 HTS assays and subsequently adapt those assays to a miniaturized 384-well format. Assay conversion to a miniaturized format presents certain difficulties, such as robustness of the signal and of compound delivery. Thus the assay optimization involved the comparison of different substrates to identify those most suitable for use in a miniaturized format. Because of current technical limitations in liquid dispensing of nanoliter volumes, assay sensitivity to organic solvents also provides a main concern during assay miniaturization. Therefore, compound activity from redissolved dry films and from DMSO stocks directly delivered into assay buffer was compared. The data indicate that compound activity was comparable in both formats. The data support the conclusion that CYP2D6 and CYP3A4 in vitro metabolism assays can be successfully performed in 384-well plate format and the substrate potencies, as evaluated by the IC50 values, determined.

Publisher

Elsevier BV

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3