Detailed development and validation of a finite element model for studying the entire spinal vibration behavior within a seated human body

Author:

Dong RuiChun1ORCID,Lu ZhuangQi1,Cheng Xiang1,Wang Yi2,Liu HuanBao1ORCID,Mu ZongGao1

Affiliation:

1. School of Mechanical Engineering, Shandong University of Technology, Zibo, PR China

2. School of Chemical Engineering, University of Birmingham, Birmingham, UK

Abstract

Studying the vibration behavior of the entire spine can guide the design of seat comfort and vibration safety. However, due to simplification of traditional biomechanical models, very few studies have analyzed in detail the vibration behavior characteristics of the entire spine inside a seated human body. Therefore, this study aimed to provide guidance and reference for spinal modeling and biomechanical research in ergonomics. A developed finite element model of three-dimensional seated human body was validated and adjusted based on anatomical data of human spine in detail. Static analysis, modal analysis and random response analysis (under vertical excitation between 0 and 20 Hz at 1 m/s2 r.m.s.) were conducted. The range of motion, modal frequencies and the tri-axial transmissibility of the developed models matched well with experimental results. In the vertical resonance mode, the entire spine contained both vertical deformation (60% of the total) and vertical displacement (40%), in addition, the cervical spine, especially the lumbar spine, also contained bending deformation which could alleviate the impact, but led to complex alternating stresses, increasing the risks of the spinal injuries under vertical whole-body vibration. From the bottom to the top of the spine, the frequency distribution of vertical transmissibility became steeper, the peak value increased, and the number of peaks decreased. This study provided new insights into the vibration behavior and frequency response of the entire spine inside a seated human body for improving seat comfort and vibration safety.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Taishan Scholar Project of Shandong Province

Scientific Innovation Project for Young Scientists in Shandong Provincial Universities

Natural Science Foundation of Shandong Province

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3