Identification of the anisotropic behavior of an aluminum alloy subjected to simple and cyclic shear tests

Author:

Olfa Daghfas1,Amna Znaidi1,Amen Gahbiche2,Rachid Nasri1

Affiliation:

1. National School of Engineers of Tunis, University of Tunis El Manar, Tunisie

2. Mechanical Engineering Laboratory, National School of Engineers of Monastir, Monastir, Tunisie

Abstract

The main purpose of this paper is to study the behavior of the 2000 aluminum alloy series used particularly in the design of Airbus fuselage. The characterization of the mechanical behavior of sheet metal on 2024 aluminum alloy and its response to various loading directions under monotonic and cyclic tests are extremely considered. To solve this problem, first, an experimental platform which essentially revolves around mechanical tests and then a series of optical and transmission electronic visualizations have been carried out. These mechanical tests are monotonic and cyclic shear tests applied under the same conditions on the test specimens of 2024 aluminum alloy. Cyclic shear tests have been carried out in order to show the Bauschinger effect and then the kinematic hardening phenomenon. The hardening curves of the simple shear test showed the Portevin-Le Chatelier effect for all loading directions. Next, the experimental results obtained (Portevin-Le Chatelier and Bauschinger effects) are discussed and analyzed in relation to the microstructure of the studied alloy using an optical microscope and a transmission electron microscope. Thereafter, the plastic anisotropy is modeled using an identification strategy that depends on a plastic criterion, an isotropic hardening law, a kinematic hardening (linear and nonlinear) law, and an evolution law. More precisely, particular attention is paid to the isotropic power Hollomon law, the saturation Voce law, and the saturation Bron law. In the case of the cyclic tests, linear kinematic hardening described by the Prager law and nonlinear kinematic hardening expressed by the Armstrong–Frederick law are introduced. Finally, by smoothing the experimental hardening curves for the various simple and cyclic shear tests, a selection is made in order to choose the most appropriate law for the identification of the material behavior.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3