Affiliation:
1. School of Mechanical and Electrical Engineering, Changchun University of Technology, China
2. Changchun Schmidt Automation Technology Co. Ltd, China
Abstract
The clinching process is more and more used in automotive design and manufacturing. Traditional quality inspection of joints needs a lot of destructive tests, which is time-consuming and material-consuming. In this paper, the clinching process and joints failure of dissimilar materials, 6061 aluminium alloy and HC340/590DP dual-phase steel, are studied. A two-dimensional finite element model is established. Experiments were carried out to verify the numerical model. Through the axial tensile test, the quality of clinched joints for upper steel-lower aluminium alloy and upper aluminium alloy-lower steel were measured, respectively, and the strength and safety of the joints met the requirements of design indexes. The conventional prediction model of maximum tensile force and its modified model was researched. Combined with numerical simulation results, the fracture load, the separation load, and the failure mode of two clinched joints were predicted, respectively. Furthermore, the results are in good agreement with the experimental results. The results show that the modified prediction model of maximum tensile force has a good prediction result, and the error rate is less than 10%. The modified prediction model of maximum tensile force can effectively predict the tensile failure test results, which provides a basis for the quality evaluation and strength prediction optimization of dissimilar materials clinched joints.
Funder
the National Natural Science Foundation of China
Scientific and Technological Developing Scheme of Ji Lin Province
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献