Raw vibration signal pattern recognition with automatic hyper-parameter-optimized convolutional neural network for bearing fault diagnosis

Author:

Li Heng1ORCID,Zhang Qing1,Qin Xianrong1,Yuantao Sun1

Affiliation:

1. Departamento de Engenharia Mecânica (DEPMC), Federal Centre of Technological Education in Rio de Janeiro (CEFET/RJ), Brazil

Abstract

Bearing fault diagnosis is of great significance for evaluating the reliability of machines because bearings are the critical components in rotating machinery and are prone to failure. Because of non-stationarity and the low signal-noise rate of raw vibration signals, traditional fault diagnosis methods often construct representative fault features via the technologies of feature engineering. These methods rely heavily on expertise and are inadequate in actual applications. Recently, methods based on convolutional neural networks have been studied extensively to relieve the demands of hand-crafted feature extraction and feature selection. However, the raw vibration signal is rarely taken as a direct input. This study combines a convolutional neural network with automatic hyper-parametric optimization and proposes two deep learning models for time-series pattern recognition to achieve “end-to-end” bearing fault diagnosis: a one-dimensional-convolutional neural network and a dilated convolutional neural network. The architecture of the two models are tweaked by automatic optimization rather than manual trial or grid search. Further, we try to figure out the inner operating mechanism of the proposed methods by visualizing the automatically learned features. The proposed methods are applied to diagnose roller bearing faults on a benchmark experiment and a prototype experiment. The results verify that our methods can achieve better performance than other intelligent methods via a Gaussian-noise test.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3