Investigation the influence of spacer yarns orientation angle on the thermal behavior of 3D textile reinforced concrete (TRC)

Author:

Abdellahi Sayyed Behzad1ORCID,Hejazi Sayyed Mahdi1,Hasani Hossein1

Affiliation:

1. Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Thermal behavior such as heat transfer is an important parameter for construction composites. Three-dimensional textile reinforced concrete (TRC) is one of the construction composites which is recently being used in the building industry. Therefore, in this study, the thermal behavior of three different TRC samples was investigated by a heat transfer test using an infrared method. The cementitious matrix was reinforced by 3D fabric with three different spacer yarn orientation angles. The cementitious matrix was fabricated by cement and waste stone powder. The TRC sample was put on the hot plate of the heat transfer apparatus and the temperature variations of the top surface of the sample were obtained. According to the test results, increasing the orientation angle of spacer yarns leads to a decrease in the thermal conductivity of the TRC sample and reduces heat transfer. On the other hand, a theoretical model was used to calculate the thermal conductivity and resistance coefficients of sandwich samples. Furthermore, a 3D finite element model was used to predict the heat transfer of TRC specimens. A unit cell of the TRC model was created in Abaqus software and finite element (FE) analysis was carried on a created model. Thermal conductivity and thermal resistance of samples according to FE results were calculated and compared with experimental results. FE results showed good agreement with the experimental data.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3