Affiliation:
1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, People's Republic of China
Abstract
For the periodical composite structural-acoustic system with multi-scale interval uncertainties, a new interval analysis approach is presented in this study. In periodical composites structural-acoustic systems with multi-scale interval parameters, the variation ranges of the sound pressure response can be calculated using the homogenization-based interval finite element method. However, the homogenization-based interval finite element method that is based on Taylor series can only suit periodical composites structural-acoustic problems with small uncertainty degree. To consider larger uncertainty degree, by combining the Chebyshev polynomial series and the homogenization-based finite element, a homogenization-based Chebyshev interval finite element method is presented to predict the sound pressure responses of the structural-acoustic system involving periodical composite and multi-scale interval parameters. Compared with homogenization-based interval finite element method, homogenization-based Chebyshev interval finite element method can obtain higher accurate numerical solutions in the approximate process. Besides, homogenization-based Chebyshev interval finite element method can be implemented without conducting the complex derivation process. Numerical results verify the validity and practicability of the presented homogenization-based Chebyshev interval finite element method for the periodical composite structural-acoustic problem.
Funder
Hunan Provincial Innovation Foundation for Postgraduate
Fundamental Research Funds for the Central Universities
Key Project of Science and Technology of Changsha
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献