Thermodynamic characteristics research of a water lubricating axial piston pump

Author:

Li Donglin12ORCID,Li Geqiang12,Han Jianhai12,Liu Yinshui3ORCID,Wu Defa3

Affiliation:

1. Henan University of Science and Technology, School of Mechatronics Engineering, Luoyang, China

2. Henan Collaborative Innovation Center of Manufacture of Advanced Machinery and Equipment, Henan University of Science and Technology, Luoyang, China

3. State Key Laboratory Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China

Abstract

A water lubricating axial piston pump (WLAP) is one of the key components in water hydraulic systems. However, the characteristics of water, including low viscosity, strong corrosiveness, and easy vaporization, results in the increase of friction and wear of pairs, and the increase of temperature. Compared with oil pumps, the thermodynamic characteristic of WLAP is more serious. In this paper, the integrated thermodynamic model of WLAP, which includes heat generation of pairs and heat conduction of water and air, is established to improve pump design. The calculation results show that the water temperature of WLAP exceeded 90 ℃, and the pump could not work normally in extreme conditions (the inlet water temperature and ambient temperature are both 50 ℃). Consequently, a cooling design of WLAP, which circulates the inlet water in the pump chamber, is carried out. Then, the thermodynamic model was modified. Based on this model, the temperature rise characteristics and heat dissipation characteristics of the WLAP are analyzed. The steady-state water temperature of pump shell under extreme conditions is obtained. The temperature sensors and a thermal imaging were used to measure the temperatures of the WLAP. The results indicate that the water temperature of WLAP decreases significantly. The difference of the steady-state temperature of WLAP between simulation and experiment is less than 4 ℃, and its temperature distribution is uniform. Therefore, the cooling design of WLAP is effective and it can work normally under the maximum speed and pressure in extreme conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3