Kinematic synthesis and optimization design of a rice pot seedling transplanting mechanism

Author:

Xu Haocong1ORCID,Wang Lei1,Miao Yuejun2,Sun Liang13ORCID

Affiliation:

1. Faculty of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China

2. Hangzhou Anjie Brake Co. Ltd, Hangzhou, Zhejiang, China

3. Zhejiang Province Key Laboratory of Transplanting Equipment and Technology, Hangzhou, China

Abstract

To achieve the precise operation trajectory and posture required for pot seedling transplanting and solve the problem that the partial reversal of the transplanting arm’s output in the double planet carrier transplanting mechanism, which is unconducive to the realization of the seedling pushing action, a motion synthesis method for a double planet carrier gear train mechanism with attitude constraints based on the output angle and four exact task poses is proposed. First, the ideal transplanting trajectory is planned according to the transplanting agronomic requirements, and the position and attitude information of the four key points on the ideal trajectory are extracted as the constraints of the mechanism design. Then, based on the relative displacement equation, a comprehensive design equation of the motion of the plane 3R mechanism (simplified model of the transplanting mechanism) about the output rotation angle and the precise four pose constraints is established, and the mechanism parameters that meet the constraint requirements are obtained by solving the multicellular homotopy method. A mathematical model of the roundness of the non-circular gear was also established, and the roundness of the transmission non-circular gears in the gear-train transplanting mechanism was optimized by using the genetic algorithm. Finally, the structural design, virtual simulation, and experimental analysis of the double-planet carrier gear train transplanting mechanism were completed. The results show that the actual trajectory and attitude are consistent with the theoretical design, and when then the mechanism was under the transplanting efficiency of 120 and 180 plants/min, the success rates of picking seedlings were 91.53% and 87.46%, respectively, meeting the design requirements.

Funder

Key research and development program of Zhejiang Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference22 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3