Artificial neural network for Gaussian and non-Gaussian random fatigue loading analysis

Author:

Durodola JF1ORCID

Affiliation:

1. Faculty of Technology, Design and Environment, Oxford Brookes University, Oxford, UK

Abstract

There has been a lot of work done on the analysis of Gaussian loading analysis perhaps because its occurrence is more common than non-Gaussian loading problems. It is nevertheless known that non-Gaussian load occurs in many instances especially in various forms of transport, land, sea and space. Part of the challenge with non-Gaussian loading analysis is the increased number of variables that are needed to model the loading adequately. Artificial neural network approach provides a versatile means to develop models that may require many input variables in order to achieve applicable predictive generalisation capabilities. Artificial neural network has been shown to perform much better than existing frequency domain methods for random fatigue loading under stationary Gaussian load forms especially when mean stress effects are included. This paper presents an artificial neural network model with greater predictive capability than existing frequency domain methods for both Gaussian and non-Gaussian loading analysis. Both platykurtic and leptokurtic non-Gaussian loading cases were considered to demonstrate the scope of application. The model was also validated with available SAE experimental data, even though the skewness and kurtosis of the signal in this case were mild.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An artificial neural network model for fatigue damage analysis of wide-band non-Gaussian random processes;Applied Ocean Research;2024-03

2. Investigation of multi-input multi-output sine on random mixed vibration control;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-01-08

3. Fatigue modeling using neural networks: A comprehensive review;Fatigue & Fracture of Engineering Materials & Structures;2022-01-07

4. Machine learning for design, phase transformation and mechanical properties of alloys;Progress in Materials Science;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3