Surface integrity in laser-assisted machining of Ti6Al4V

Author:

Kalantari O1,Fallah MM1ORCID,Jafarian F2ORCID,Hamzeloo SR1ORCID

Affiliation:

1. Mechanical Engineering Department, Shahid Rajaee Teacher Training University, Tehran, Iran

2. Faculty of Engineering, Mahallat Institute of Higher Education, Mahallat, Iran

Abstract

In laser-assisted machining (LAM), the laser source is focused on the workpiece as a thermal source and locally increases the workpiece temperature and makes the material soft ahead of the cutting tool so using this method, the machining forces are reduced, which causes improving the surface quality and cutting tool life. Machinability of advanced hard materials is significantly low and conventional methods do not work effectively. Therefore, utilizing an advanced method is inevitable. The product life and performance of complex parts of the leading industry depends on surface integrity. In this work, the surface integrity features including microhardness, grain size and surface roughness (Ra) and also the maximum cutting temperature were investigated experimentally in LAM of Ti-6Al-4V. According to the results, cutting speed has inverse effect on the effectiveness of LAM process because with increasing speed (15 to 63 m/min), temperature decreases (524 °C to 359 °C) and surface roughness increases (0.57 to 0.71 μm). Enhancing depth of cut and feed has direct effect on the process temperature, grain size, microhardness and surface roughness.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3