Robust multi-objective optimization design of active tuned mass damper system to mitigate the vibrations of a high-rise building

Author:

Pourzeynali S1,Salimi S2

Affiliation:

1. Department of Civil Engineering, University of Guilan, Rasht, IR Iran

2. Department of Civil Engineering, University of Mohaghegh-Ardebili, Ardebil, IR Iran

Abstract

In engineering applications, many control devices have been developed to reduce the vibrations of structures. Active tuned mass damper system is one of these devices, which is a combination of a passive tuned mass damper system and an actuator to produce a control force. The main objective of this paper is to present a practical procedure for both deterministic and probabilistic design of the active tuned mass damper control system using multi-objective genetic algorithms to mitigate high-rise building responses. For this purpose, extensive numerical analyses have been performed, and optimal robust results of the active tuned mass damper design parameters with their effectiveness in reducing the example building responses have been presented. Uncertainties, which may exist in the system, have been taken into account using a robust design optimization procedure. The stiffness matrix and damping ratio of the building are considered as uncertain random variables; and using the well-known beta distribution, 50 pairs of these variables are generated. This resulted in 50 buildings with different stiffness matrices and damping ratios. These simulated buildings are used to evaluate robust optimal values of the active tuned mass damper design parameters. Four non-commensurable objective functions, namely maximum displacement, maximum velocity, maximum acceleration of each floor of the building, and active control force produced by the actuator are considered, and a fast and elitist non-dominated sorting genetic algorithm approach is used to find a set of pareto-optimal solutions.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Optimization of Structural Control Systems;Advances in Mechatronics and Mechanical Engineering;2024-05-20

2. Blockchain design for optimal joint production and maintenance over multiple periods for oil-filling production lines;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2024-05-17

3. A multi-step approach for reliability-based robust design optimization of truss structures;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2023-02-06

4. Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm;Earthquake Engineering and Engineering Vibration;2022-04

5. Design a Hybrid Control System to Reduce Building Vibration Under External Environment;Lecture Notes in Mechanical Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3