Investigation on parametric sensitivity of topologically optimized structures

Author:

Javed Arshad1,Rout BK1

Affiliation:

1. Department of Mechanical Engineering, Birla Institute of Technology & Science, India

Abstract

Topology optimization is a powerful method of material minimization in structural design problems. The obtained topology and the compliance values by this method are very sensitive to each of the input parameters such as, applied force, volume fraction, dimensions, and support-rigidity. In real-life situations, these parameters may vary due to material uncertainty, manufacturing imperfections, and operating conditions. Hence, the topology obtained during the conceptual design phase may not suffice the actual working condition. Thus, it is desirable to explore individual and the combined effects of the parametric variations and uncertainties. This study describes a systematic approach utilized to investigate the effect of different input parameters on compliance values along with material and load uncertainties for a topologically optimized structure. In this paper, applied force, volume fraction, and aspect ratio of the domain are treated as input parameters and their effects are analyzed. Proposed work modifies the solid isotropic microstructure with penalization method to incorporate the effect of uncertainties and uses design of experiments approach to investigate statistically significant input parameters. Four different benchmark problems available in the literature are analyzed and the results are obtained for aforesaid input parameters along with uncertainties. Results obtained from this investigation will help designers/practitioners to select suitable input parameters combination to achieve targeted compliance.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parametric analysis of topologically optimized mechanical member considering dynamic loading;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-12-27

2. Integrated method for performance analysis of reliability-based topologically optimized components;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2019-08-03

3. Fuzzy set based multi-objective optimization for eight-rod mechanism via sensitivity analysis;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2017-12-08

4. Design of flexure hinges based on stress-constrained topology optimization;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2016-09-30

5. Tolerance range selection of topologically optimized structures with the effects of uncertainties of manufacturing process;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2014-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3