Affiliation:
1. Department of Mechanical Engineering, Birla Institute of Technology & Science, India
Abstract
Topology optimization is a powerful method of material minimization in structural design problems. The obtained topology and the compliance values by this method are very sensitive to each of the input parameters such as, applied force, volume fraction, dimensions, and support-rigidity. In real-life situations, these parameters may vary due to material uncertainty, manufacturing imperfections, and operating conditions. Hence, the topology obtained during the conceptual design phase may not suffice the actual working condition. Thus, it is desirable to explore individual and the combined effects of the parametric variations and uncertainties. This study describes a systematic approach utilized to investigate the effect of different input parameters on compliance values along with material and load uncertainties for a topologically optimized structure. In this paper, applied force, volume fraction, and aspect ratio of the domain are treated as input parameters and their effects are analyzed. Proposed work modifies the solid isotropic microstructure with penalization method to incorporate the effect of uncertainties and uses design of experiments approach to investigate statistically significant input parameters. Four different benchmark problems available in the literature are analyzed and the results are obtained for aforesaid input parameters along with uncertainties. Results obtained from this investigation will help designers/practitioners to select suitable input parameters combination to achieve targeted compliance.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Parametric analysis of topologically optimized mechanical member considering dynamic loading;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-12-27
2. Integrated method for performance analysis of reliability-based topologically optimized components;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2019-08-03
3. Fuzzy set based multi-objective optimization for eight-rod mechanism via sensitivity analysis;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2017-12-08
4. Design of flexure hinges based on stress-constrained topology optimization;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2016-09-30
5. Tolerance range selection of topologically optimized structures with the effects of uncertainties of manufacturing process;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2014-04-11