Exploration of Thermophoresis and Brownian motion effect on the bio-convective flow of Newtonian fluid conveying tiny particles: Aspects of multi-layer model

Author:

Anandika Rajeev1,Puneeth Venkatesh1,Manjunatha Sarpabhushana2ORCID,Shehzad Sabir Ali3ORCID,Arshad Misbah3

Affiliation:

1. Department of Mathematics, CHRIST (Deemed to Be University), Bengaluru, India

2. Department of Sciences and Humanities, CHRIST (Deemed to Be University), Bengaluru, India

3. Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan

Abstract

This research deals with the analysis of bioconvection caused by the movement of gyrotactic microorganisms. The multi-layer immiscible Newtonian fluid flowing through the vertical channel conveying tiny particles is accounted. The immiscible fluids are arranged in the form of a sandwich where the middle layer has a different base fluid that does not mix with the base fluid of the adjacent fluid layer. This separation of the fluid layers gives rise to the interface boundary conditions. Such flows have found applications in electronic cooling and solar reactors processes. Buongiorno’s model has been incorporated to design the mathematical model that describes the three-layer flows of Newtonian fluid conveying tiny (metal/oxide) particles under thermophoretic force and Brownian motion. The model thus formed is in the form of the ordinary differential system of equations that are solved using the DTM-Pade approximant after non-dimensionalization. The limited results have an excellent comparison with the existing literature results. The results are discussed through graphs and tables. It is seen that thermophoresis enhances the temperature and particle concentration of the fluid whereas, the Brownian motion is found to enhance the temperature and decrease the concentration. The presence of bioconvection helps in achieving enhanced energy and mass transportation. Moreover, the heat transfer occurring between the different base fluids helps to maintain the optimum temperature in the systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3