Affiliation:
1. Polymer Mechanics Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, India
Abstract
Epoxy resin controls the mechanical behavior of fiber-reinforced epoxy composites, which are extensively deployed in the aerospace and automotive industries. For numerical simulations to accurately predict the mechanical deformations of these components under multi-axial loading, matrix characteristics must account for tension, compression, and shear loads at varying strain rates. The existing literature lacks a comprehensive approach to predicting the experimental outcomes across all three loading conditions in a polymer matrix simultaneously using a unified set of viscoelastic or viscoplastic model parameters. In this study, the Three-Network (TN) viscoplastic model was successfully applied to concurrently predict the tension, compression, and shear experimental data of an epoxy resin, published by Littel et al. ( Journal of Aerospace Engg., 2008). The elastic modulus, strain softening-hardening response after yield for tension-compression deformation, and post-yield stress saturation under shear deformation are all accurately predicted by the model at different rates of loading conditions. The predicted and simulated results matched well when the TN viscoplastic model predicted parameters were employed as material property in Abaqus (a commercial finite element software) to simulate the deformation modes. This integrated approach highlights the potential of the TN model in enabling precise predictions for epoxy-based composites, which is crucial for optimizing their performance and reliability in aerospace engineering.
Funder
Indian Institute of Technology (Indian School of Mines), Dhanbad