Feedback control of the mechanical spindle thermal error based on thermal simulation with bearing heat sources analysis

Author:

Lei Mohan12ORCID,Gao Feng12ORCID,Li Yan12,Xia Ping3ORCID,Zhao Liang3,Yang Jun3

Affiliation:

1. Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, China

2. Key Lab of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi’an University of Technology, Xi’an, China

3. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Abstract

The thermal error stability (STE) of the spindle seriously affects the machining accuracy of a machine tool, however existing empirical heating model-based active cooling strategies mainly focus on suppressing the spindle’s overall thermal deformation and cannot effectively stabilize the thermal error. This study regards the “active cooling-spindle” system as a feedback control system and employs a data-driven thermal error model to provide feedback. Thus, the spindle thermal error can be stabilized for a long time owing to the homeostasis of the feedback control system under disturbance. A mechanical spindle with an external cooling scheme is taken as the study object. Bearings are the primary heat sources of the mechanical spindle; thus, the angular contact ball-bearing heat generation is precisely modeled based on local heat sources analysis of bearing components, elastohydrodynamic lubrication, and micro-contact theory. Thermal simulation of the spindle under varying-coolant temperature cooling is conducted to pre-validate the thermal error suppression and variation trend influencing effect, and obtain the Reference Input of Thermal Error (RITE) for the feedback control under different work conditions. Subsequently, a spindle thermal error feedback control system is developed, including computation, cooling, and real-time monitoring modules with inter-communication. Finally, the thermal error feedback control strategy is applied on the mechanical spindle, and experimental comparisons with constant coolant temperature cooling show that the thermal equilibrium time is advanced by 61.46%, 59.16%, 40.51%, and 58.08%. The thermal error variation range (TEVR) after the preheating stage is reduced to1.92, 1.52, 1.91, and 1.69 μm, respectively. The significant reduction in TEVR validated the effectiveness of the proposed strategy for spindle thermal error stabilization.

Funder

the Science and Technology Major Project of Shaanxi Province

Shandong Tai Shan industrial leader talent project

Natural Science Fundamental Research Program of Shaanxi Province

the National Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3