Affiliation:
1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
Abstract
In this study, a semi-empirical model was proposed to calculate the penetration depth and cavity diameters generated by shaped charge jet into high and ultra-high strength concrete (H&UHSC) targets. A recently proposed axial penetration equation and the two-step mechanism of cavity growth were employed to determine the analysis. The predictions were validated with reference to the experiments conducted using a kind of H&UHSC named reactive powder concrete (RPC). Furthermore, the influences of the RPC compressive strength and the jet velocity on the penetration were analyzed. The results showed that the RPC targets had good protection efficiency for both penetration depth and cavity diameters as the compressive strength approaches approximately 250∼280MPa. Moreover, the radial cavity growth efficiency increased linearly with the increase of the jet velocity, while the axial penetration efficiency increased rapidly when the jet velocity was 1.0∼4.0km/s and reached the maximum at 4.0∼7.0km/s and tended to be stable as the jet velocity increased to greater than about 7.0km/s.
Funder
National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献