Microstructural evolution and mechanical behaviors of equal channel angular pressed copper

Author:

Pourhamid Reza1ORCID,Shirazi Ali2

Affiliation:

1. Department of Mechanical Engineering, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran

2. Department of Mechanical Engineering, Qom University of Technology, Qom, Iran

Abstract

The mechanical properties including Vickers hardness, tensile properties, fracture toughness, impact toughness and also, the microstructure of copper severely deformed by equal channel angular pressing through route C after two, four, and eight passes at ambient temperature, were studied in the present work. The results indicated that the grains size reduced from 16.7 to 4.8 µm after two and to 2.1 µm after eight passes. This study cleared that because of the recrystallization phenomenon and reducing the effect of stress concentration and increasing the number of grain boundaries, the values of the fracture toughness can increase significantly. For example, fracture toughness increases by 58.4% relative to base metal after eight passes equal channel angular pressing. Also, it was found that the major improvement in tensile properties is achieved after two passes and due to the applied simple shear to the copper, all the equal channel angular pressed specimens have demonstrated an enhanced hardness and impact toughness, in accordance with their number of equal channel angular pressing passes. For example, the Vickers hardness is increased by a factor of 1.98 and impact toughness 58.4% for the extruded material after eight passes.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3