Material removal analysis during MR polishing of complex gear teeth profiles

Author:

Kumar Manjesh12ORCID,Kumar Chandan3,Yadav Hari Narayan Singh1,Das Manas1,Yu Nan4

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Guwahati, Assam, India

2. Department of Mechanical Engineering, SRM University AP, Neerukonda, Andhra Pradesh, India

3. Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, India

4. School of Engineering, The University of Edinburgh, Edinburgh, UK

Abstract

The geometric intricacy of tiny gears makes nano-finishing difficult. In the current study, the magnetorheological (MR) polishing process is used for the nano-finishing of intricate surfaces of tiny gear components uniformly. For polishing, the technique employs a dynamic fluid recognized as magnetorheological polishing fluid (MRPF), that has the ability to stiffen in the presence of a magnetic field. Base media, iron and abrasive particles are utilized to synthesize the MRPF. Permanent magnets produce the necessary magnetic field in the finishing zone. Finite element analysis (FEA) is utilized to model the iron and abrasive particles to understand better how they would react in the external magnetic field. FEA is utilized to analyze the magnetic flux density (MFD) distributions and the amount of magnetic force exerting on gear profiles through iron particles (IPs). It has been observed that the IPs present close to the active abrasives are primarily accountable for indenting active abrasives into the workpiece surfaces. In addition, the influence of particle dimension on the stiffness of iron particle chains in MRPF has been investigated. A mathematical model for material removal is developed by utilizing normal finishing force analysis on active abrasives. Lastly, the finishing surface characteristics of gear profiles are examined using an optical profilometer, field emission scanning electron microscope (FESEM) and spectroscopic analysis. Finally, 92.68% improvement in the surface finish is observed.

Funder

Science and Engineering Research Board

Engineering and Physical Science Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3