Distortion of removal function based on the local asphericity of aspheric surface and the viscoelasticity of polishing tool in computer-controlled optical surfacing

Author:

Chen Xianhua12,Zhong Bo23,Wang Jian2,Huang Hongzhong3,Deng Wenhui2,Hou Jing2,Yuan Zhigang2,Zhao Shijie2

Affiliation:

1. Department of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun, China

2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China

3. Department of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China

Abstract

In the process of large aspheric optical surfaces fabrication, the distortion of the removal function is a big problem that affects the producing efficiency and accuracy, due to the misfit between the tool and the aspheric surface in the contact region. Consequently, this paper aims to find out the influence factors and the distortion rule of aspheric removal function in the computer-controlled optical surfacing. Firstly, based on the analysis of the sub-aperture polishing technology for the large aspheric optical surfaces, the local asphericity of aspheric surface and the viscoelasticity of polishing tool are supposed to be the main sources. After that, a method to calculate the local asphericity considering the misfit between the tool and the aspheric surface is proposed based on the least square method, and the viscoelasticity of the polishing tool is obtained through viscoelastic experiment. Subsequently, combining the results of the local asphericity of aspheric surface and the viscoelasticity of polishing tool, the prediction of the distortion rule of aspheric removal function is presented. Finally, the comparative experiment is carried out, and the removal function on different regions of the aspheric surface is obtained. The experimental result indicated that the distortion of the removal function is consistent with the theoretical result. Through this study, the distortion rule of aspheric removal function in the computer-controlled optical surfacing with pitch tool is finally mastered, which provides a theoretical guidance for the computer-controlled optical surfacing process optimization.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3