Affiliation:
1. NDE Lab., Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
Abstract
In recent years, Higher Order Modes Cluster (HOMC) guided waves have been considered for ultrasonic testing of plates and pipes. HOMC guided waves consist of higher order Lamb wave modes that travel together as a single nondispersive wave packet. The objective of this paper is to investigate the effect of frequency-thickness value on the contribution of Lamb wave modes in an HOMC guided wave. This is an important issue that has not been thoroughly investigated before. The contribution of each Lamb wave mode in an HOMC guided wave is studied by using a two-dimensional finite element model. The level of contribution of various Lamb wave modes to the wave cluster is verified by using a 2D FFT analysis. The results show that by increasing the frequency-thickness value, the order of contributing modes in the HOMC wave packet increases. The number of modes that comprise a cluster also increases up to a specific frequency-thickness value and then it starts to decrease. Plotting of the cross-sectional displacement patterns along the HOMC guided wave paths confirms the shifting of dominant modes from lower to higher order modes with increase of frequency-thickness value. Experimental measurements conducted on a mild steel plate are used to verify the finite element simulations. The experimental results are found to be in good agreement with simulations and confirm the changes observed in the level of contribution of Lamb wave modes in a wave cluster by changing the frequency-thickness value.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献