Two-parameter Lie convective Casson fluid scale study with MHD, joule heating and viscous dissipation influences

Author:

Nazim Tufail Muhammad1,Saleem Musharafa12,Ali Chaudhry Qasim2

Affiliation:

1. Department of Mathematics, University of Management and Technology, Sialkot, Pakistan

2. Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan

Abstract

The model encountered an unsteady laminar and two-dimensional convective flow of Casson fluid passing through an inclined permeable vertical stretching sheet. The momentum, thermal and concentrated boundary layers (BLs) are used to analyze the unsteady effects of magnetohydrodynamics (MHD) (neglecting induced magnetic field), viscous dissipation, Joule heating and chemical reactions. The governed partial differential equations (PDEs) of the model are reduced to the ordinary differential equations (ODEs). The ξ and χ are selected as the two parameters of the scaling transformations. By using bvp4c with MATLAB, the ODEs are solved numerically and represent their results through the graphs and tables. After the non-dimensionalizing of the equations system, we get the emerging dimensionless parameters. The concentration process was enhanced by the Casson fluid parameter but it reduced the fluid flow and thermal transfer that can be found through the graphical results. The effect of Buoyancy is highlighted as it reduced the velocity profile function, but it is a growing function of the thermal and concentrated profiles. The physical quantities are integrated through the table and graphical analysis. In the center of the wall, the number Shx versus Sc decreases, but at the end it increases.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3